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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1989, VOL. 8, No. 4, 275-288 

The calculation of vibrational energy levels by 
semiclassical and quantum methodology: a review 

by NICHOLAS C. HANDY 
University Chemical Laboratory, Lensfield Road, 

Cambridge CB2 lEW, England 

In this review the four best techniques that answer the question ‘Given an 
analytical potential-energy surface, how does one calculate the (J = 0) vibrational 
energy levels? are discussed. The methods examined are (i) the fully variational 
matrix procedure, (ii) the semiclassical approaches relying on quantisation of the 
Einstein action integrals, (iii) the adiabatic switch-on method, and (iv) the quantum 
Monte Carlo method applied to vibrations. In particular, the usefulness of each 
procedure is examined with regard to the number of atoms ( N > 3 ) ,  and the 
calculation of highly excited vibrational levels. 

1. Introduction 
This review is an attempt to report on the best answers, to date, to the question 

‘Given an analytical potential-energy surface for a polyatomic molecule, how does one 
calculate the ( J  = 0) vibrational energy levels? This is an important question because it 
is argued that the potential surface lies behind the whole of chemistry, and hence we 
spend a considerable amount of time deriving analytic representations for such 
surfaces. One test of the acceptibility of such surfaces is the requirement that the 
vibrational levels derived from these surfaces give good agreement with experimental 
vibrational levels-we are therefore faced with the problem considered here. Such 
surfaces may have been derived indirectly from experimental work, or may result from 
ab initio computation. We may need to optimise parameters in such a surface by a non- 
linear least-squares fit of experimental values to these vibrational levels, and thus it is 
desirable to have methods that obtain these levels efficiently. It is also desirable to 
obtain many such levels and to have procedures that determine such levels for a general 
polyatomic molecule. With these points in mind, the sections that follow analyse the 
various methods that are available for solving this problem. We also note that typically 
experimentalists are able to observe frequencies to an accuracy of 0.01 cm- or better; it 
will never be possible for us to calculate to that accuracy, but as a guide an accuracy of 
1 cm-’ in the vibrational levels of the potential is reasonable. 

We concentrate in this review on vibrational eigenvalues (i.e. the total angular 
momentum J is taken to be zero). An accurate determination of vibrational-rotational 
energy levels is a very much larger problem. In principle this is because there are 25 + 1 
rotational levels associated with each J ,  and these are usually determined by 
diagonalising an approximate (25 + 1) x (25 + 1) effective Hamiltonian matrix. This 
suffices in most cases. However, once J is large, say 5 x 20, there will be considerable 
interaction with vibrational levels; some work on this problem has been discussed by 
Tennyson and Sutcliffe (1986). We shall confine attention to molecular bound states 
with well defined minima; the determination of vibrational levels for weakly bound 
molecules requires different procedures, which are beyond the scope of this restricted 
review. It will be seen that the problem is complex enough for intramolecular 
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276 N .  C. Handy 

vibrational energy levels anyway. We also observe that as the energy increases, the 
density of vibrational states increases enormously. The vibrational levels in which we 
are interested for a typical polyatomic may be such that on average the separation 
between levels is a few tens of wavenumbers. 

We shall not discuss diatomic molecules in this review. This is because the potential 
surface of a diatomic molecule is represented in terms of only one coordinate, the 
internuclear distance. The Born-Oppenheimer equation for the nuclear motion is then 
a one-dimensional problem, which can be solved essentially exactly by numerical 
means, for any given form of the potential. 

2. Analytical representation of the potential surface 
There is an excellent book on this subject, by Murrell et al. (1984), to which the 

reader is referred. For diatomics, Murrell et al. recommend the extended Rydberg 
representation 

where p = r - Yo, r is the diatomic separation and ro is some reference value (such as the 
equilibrium separation re). Such a representation is satisfactory for both bound and 
repulsive states, although it does not include long-range dispersion effects. The 
constants in (1) are available for many diatoms, and the accuracy of such 
representations far exceeds 1 cm- in vibrational levels. 

For triatomics, it is desirable to represent V in terms of some internal coordinates. 
For example, for H,O, the usual bond-length and bond-angle changes Arl, Ar,, A6 give 
the Dunham form (Dunham 1932), expressed normally up to quartic terms (or higher): 

Any function V s o  represented will not be well described away from equilibrium, 
because the radius of convergence for Ar is O,<r < 2r,; Simons et al. (1973) suggested the 
alternative form 

for which the radius of convergence is l/2re ,<r< 00. More recently, Meyer et al. (1986) 
have suggested the representation 

the functions [l -exp (- cllArJa being related to Morse-oscillator potential functions. 
The potentials (2)-(4) can be arranged to have the same Taylor expression through any 
order, They should give reasonable representations for V in the region of the 
equilibrium geometry. There are of course other sets of coordinates that could be used 
for a triatomic molecule: 

(i) atom-diatomic coordinates R,  r, 6 (Tennyson and Sutcliffe 1985); 
(ii) hyperspherical coordinates for the stretching motions r, cp, together with the 

bond angle 8 (Frey and Howard 1985); 
(iii) symmetry coordinates, for example s1 = p l  + p z ,  s, = p l  -p2 ,  sg = p 3 .  
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Calculation of vibrational energy levels 277 

Which one is the best is debatable for the system under consideration, but current 
evidence is that, whichever set is chosen, they will be satisfactory provided that 
sufficient powers in the expansion are used for example, it appears necessary to include 
some eighth-order terms if (2) is used (Botschwina et al. 1983), whereas quartic terms 
may be sufficient to obtain comparable accuracy from (3). 

For a representation of the whole potential surface, Murrell et al. (1984) argue in 
favour of the analytical representation 

where the V(’) are the extended Rydberg representations for the dissociated diatoms of 
the system, and 

-tanh(+yipi)] [1 +ccipi+Ccijpipj+. ..I. 

It can be seen that V3) is chosen so that it tends to zero as any one atom of the molecule 
moves to infinity. In this way the Murrell et al. representation guarantees that the 
surfaces have the correct dissociation products. There are problems with conical and 
avoided intersections, which are present in nearly all potential surfaces, but Murrell 
et al. show how it is possible to overcome these problems in principle. In practice, the 
greater difficulty is with the form of V(, ) ,  and in particular the determination of 
appropriate expansion coordinates p i  and the coefficients cij. The Murrell et al. form 
does have the advantage that it can be extended to tetratomics, but little work has been 
done to date on such systems. There are of course other analytical representations of 
potential surfaces in the literature, for example, the earlier LEPS (Tennyson 1986) and 
DIM (Ellison 1963) forms. For example, there are many such surfaces for H,. 

We must not neglect to observe that it is possible to derive quadratic 
representations for V in either bond-displacement or normal coordinates. For example, 
a full quadratic representation may be determined from ab initio computation for quite 
large molecules, now that analytic second-derivative methods have appeared (Pople 
et al. 1979, Handy et al. 1985). Although the associated force constants may not be too 
reliable, their accuracy can be somewhat systematically improved. One procedure is to 
amend the most unreliable constants (the bond stretches) by scaling or other 
procedures related to experiment (Botschwina 1979). 

The ab initio approach is certainly the most straightforward for the determination 
of a quadratic force field. The success of analytic ab initio procedures means that it is 
now possible to produce cubic and quartic force constants, and evidence so far shows 
that these can be remarkably accurate (Gaw and Handy 1985). 

If sufficient experimental information is available, so that harmonic frequencies oi 
and anharmonic constants xij are known, it is possible to use second-order 
perturbation theory to determine a quartic force field in mass-weighted normal 
coordinates, from which, by a nonlinear transformation, a Dunham representation 
may be obtained. This was the way that Hoy et al. (1972) determined their famous H,O 
potential. 

Therefore in concluding this discussion of analytic potential surfaces, we can point 
out that Dunham-type representations, through quartic terms, are becoming 
increasingly available as experimental and ab initio procedures become more 
sophisticated, but analytic forms that hold over the whole surface are very scarce, 
especially for any molecule with more than four atoms. 
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278 N. C. Handy 

3. Forms for the kinetic-energy operator 
In laboratory-fixed coordinates, f has the form (atomic units are used throughout, 

unless otherwise stated) 

in the usual notation. It is desirable to derive forms for ? in terms of internal or normal 
coordinates. Because internal coordinates (bond lengths, bond angles etc.) are defined 
independently of the laboratory frame, the simplest way to derive 'f in these 
coordinates is through the chain rule: 

a 3 ~ - 6 a r ~  a 
ax,  , ax,ar ,  
-=I--, I = l , 2  ..., 3 N ,  

where ri are the internal coordinates. A little algebra produces the following form for 'f 
for triatomic ABC molecules (Carter and Handy 1984): 

where p; = m i  + m i  and p; = m; ' + m i  '. Such ideas may be extended to larger 
systems, and, using algebraic computer programs, it is thus possible to derive 'f 
straightforwardly for any well defined internal coordinate system (Handy 1987). 

There is one other form of p that is often used, namely the Watson form in normal 
coordinates (Watson 1968), which for nonlinear systems is 

where 

is called the Coriolis-coupling operator. This general form for 'f forms the basis of the 
second-order perturbation-theory analysis discussed in the previous section. 

There are also in the literature forms for 'f that are combinations of the two forms 
referred to here, such as those used by Bunker and co-workers (Hougen et al. (1970); for 
a review see Jensen (1 986)) under the names (semi) rigid-bender Hamiltonians, designed 
for use when one or more of the internal coordinates undergoes large distortions, the 
remainder being adequately described in terms of normal coordinates. 

in particular coordinate 
systems has been the subject of many papers, there is now no real difficulty in this 
procedure. 

4. The Variational Method? 

In conclusion, although in the past the derivation of 

This is the most natural way to proceed; suitable expansion functions are chosen for 
the vibrational wavefunctions, $ = and the secular matrix is diagonalised: 

?Carney et al. (1978); see also for example Burden and Quiney (1984). 
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Calculation of vibrational energy levels 279 

The will be products of one-oscillator functions: 

For triatomics this procedure is feasible, because the number of expansion functions @ I  

does not become excessive; each is a product of only three functions. For example, if 
coordinates rlr  r2, 8 are used then $(rl) may be a Morse-oscillator expansion function, 
and +(6) may be a Legendre function. The form (9) for Tshows how ?@ is evaluated; its 
form also shows that the matrix elements ( @ I l ? l @ J )  may be evaluated as products of 
one-dimensional integrals. If one of the forms (2), ( 3 )  or (4) is used for V then the same is 
true for (@IIVl@J),  and thus the evaluation of the secular matrix is a very efficient 
procedure. The limiting features in this approach will be the restriction of the size N ,  
x N ,  ofthe secular matrix, and the time it takes to evaluate the required eigensolutions. 
Now that it is possible to consider N,= 1000 or more, this method is practical for 
triatomics, and in one form or another it has been used by many workers. For example, 
numerical functions +(sJ may be used (Carney et al. (1978), and also different 
coordinate systems. Low-order apprcximations may be obtained through the use of 
self-consistent procedures (Carney et al. 1978). There are many examples in the 
literature. Early calculations (Whitehead and Handy 1975) used the Watson form for 
with normal-coordinate harmonic-oscillator expansion functions H,(Q), but these have 
lost favour because such functions are poor representations of excited vibrational 
states, particularly those that take the local-mode form (Lawton and Child 1980). 

The results of such calculations are many, and may be found in the literature. A few 
points may be made. One of the earliest results (Whitehead and Handy 1975) showed 
that the vibrational levels of the experimentally determined quartic Dunham form (2) 
for H,O (Hoy et al. 1972) did not reproduce the original experimental input. For 
example the fundamental stretching frequencies were in error by 50 cm- '. Carney et al. 
(1976) then went on to show that if an SPF potential ( 3 )  was derived from (2) (by 
expanding ( 3 )  in the form of (2) to obtain the coefficients) then almost perfect agreement 
( FZ 1 cm-') was obtained with the original data for many of the vibrational levels. This 
demonstrates that for H-containing systems a quartic Dunham potential is not a 
sufficient representation of the potential-energy surface around the minimum. More 
recently Carter and Handy (1987) have shown that if the Morse form (4) is used then 
agreement with all experimental H 2 0  and D 2 0  levels up to lOOOOcm-', to within 
5 cm - ', is achieved, which is promising. 

Carter et al. (1982) have used this variational procedure to optimise some of the 
parameters in Murrell's potentials, for molecules such as SO,. 

Attempts to extend the variational procedure to systems with more than three 
atoms ( N  > 3) are fraught with problems. The number of expansion functions @ rapidly 
becomes unmanageable, even for a small set of vibrational functions +(s), because, for 
example, when N = 4, each @ is a product of six such functions. Even so, there has been 
some work on H 2 C 0  (Handy and Carter 1981, Maessen and Wolfsberg 1984) C,H, 
and HzO, (Willetts et al. 1989). The greatest difficulty lies in the choice of good 
expansion functions to represent bond-angle and twisting vibrations. However, the 
calculations on H,02 show what is possible today; six low-lying torsional levels were 
obtained, together with the splittings of all the other fundamental vibrational levels. 
The ah initio surface, obtained with the MP2 ah initio method, gave remarkably good 
agreement with experiment in this instance. 
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280 N .  C.  Handy 

All such calculations to date have relied on MacDonald’s (1933) theorem: the ith 
eigenvalue is an upper bound on the ith exact eigenvalue. This has been the basis for the 
convergence of these approaches. For higher eigenvalues, increasingly large matrices 
have therefore been used. 

Wyatt and co-workers have suggested that this may not be necessary (Chang et al. 
1986): if the expansion functions @I are ordered approximately in energy order then, 
instead of working with the whole secular matrix, they suggest working with smaller 
secular matrices, centred on the region where the eigensolutions are required. 
Convergence is examined by increasing the dimension of these smaller secular matrices. 
In some trial investigations they showed that the eigenvalues effectively converged 
before the full matrix was used, and for many of the eigenvalues only small matrices 
were required. Those that represented local modes rapidly converged; those that were a 
heavy mixture of normal mode oscillations needed more functions. Wyatt’s approach 
opens up the possibility of using the vibrational method for both higher eigenvalues 
and larger molecules ( N  > 3). 

The present author (with S. Carter) has investigated a similar procedure, which may 
be on a firmer theoretical (variational-theory) ground (i) all the expansion functions are 
placed in some approximate energy ordering (e.g. Z < J  if ( C P ~ I H ~ @ ~ )  < (@JIHI@J)); 
(ii) the first N functions are used to construct a secular matrix H, and it is diagonalised; 
(iii) these N eigenvectors and the next M expansion functions are used to construct a 
blocked ( N  + M )  x ( N  + M) matrix H, which is diagonalised; (iv) the lowest eigenvalues 
of the two calculations, starting with the first eigenvalue, and those successive ones that 
agree within some tolerance are said to have converged. These eigenvectors (say M of 
them) are removed, M new expansion functions are added, an ( N  + M - M + M )  x ( N  
+ M - M + M )  matrix is constructed and diagonalised and the lowest eigenvalues are 
compared with the previous diagonalisation. The lowest M will have converged, M 
new expansion functions are added, and so on.. . . Our experience with this method to 
date is that it is possible to keep matrix sizes down to an acceptable size, while 
converging on a very large number of eigenvalues. Efficient use may be made of the 
special structure of the matrix H at any stage in the iterative cycle. 

The size difficulties associated with extending the variational procedure to 
molecules with N > 3 have motivated searches for other approaches to this problem. 
Some of these are outlined in the following sections. 

5. Semiclassical methods 
The undoubted success of the Rydberg-Klein-Rees procedure (Dickinson 1972) 

for the determination of potential-energy curves directly from experimental term 
values (using Bohr-Sommerfeld quantisation) for diatomic molecules has encouraged 
a lot of research into this topic. It will be recalled that the RKR procedure assumes 
knowledge of G(n) and B(n), 

G(n) = o ( n  +&--xo(n  +$))” + . . . , (13) 

B(n)=B + a(n +*) +. . . , (14) 

with 

E(n, J )  = B(n)J(J + 1) + G(n) + . . . , (15) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculation of vibrational energy levels 28 1 

and uses two Bohr-Sommerfeld 'semiclassical' quantisation conditions to derive 

dn' s' - 1/2 [G(n) - G(n')] '/'' rmax -rmin = K I  

dn'B( n') rmax-rmin - 
- K z  s' 

rmaxrmin - 1/2 [G(n) - G(n')] '/'' 

We note that to obtain the turning points rmin and rmaX, both vibrational and 
vibrational-rotational levels are required. However, in spite of valiant attempts by 
Percival and co-workers (Percival1977), no successful procedure has been developed for 
the extension of the RKR procedure for N > 2, namely to invert the rovibrational 
spectra of a polyatomic molecule to give a numerical potential surface. 

Considerable progress has been made however, in the determination of 
semiclasssical vibrational eigenvalues for systems with N > 2, and this has brought 
renewed interest in the old quantum theory-all scientists in this field should study 
Born's (1922) masterpiece 7he Mechanics of the Atom. 

For separable systems such as those with Hamiltonians 

motion in x space will not wander over all the allowed space given by I/= E,  but will be 
constrained because the energy in each oscillator is fixed. In phase space this means that 
motion wanders on an N-dimensional surface in 2N-dimensional space. For N = 2  
therefore, motion is constrained to lie on a torus, or doughnut, in the four-dimensional 
phase space. These may be vividly seen in practice by constructing PoincarC surfaces of 
section, defined as (y,  p,) plots for points on the classical trajectories for which x = 0, 
p,>O; x and y are interchanged to give a second PoincarC section. These Poincart 
sections are cross-sections of the torus. If the initial conditions for the trajectories are 
chosen so that the area of these two cross-sections obey 

r r 

(n1++)271= J pydy, (n,++)271= J pxdx 
c1 CZ 

(19) 

then it follows that the energy of the system is given by 

E=(n,++))o,  +(n,+$)o,.  (20) 
The remarkable fact is that this situation also holds in many situations where the 
Hamiltonian is not separable, namely 

H = H ,  + H , ,  (21) 
where for example H ,  = ex2yz for an N = 2 system. This follows from the Kolmogorov- 
Arnold-Moser theorem (Abraham 1967), which states, that 'provided H ,  is sufficiently 
small, classical motion proceeds as if there are N constants of the motion'. These 
constants of the motion, called adiabatic invariants, were first defined for toroids by 
Einstein (1917), and they are precisely the areas of the PoincarC sections defined above. 

If this situation held in general then a lot of progress could be made, but the problem 
is that, as the energy increases, these tori have increasingly weird shapes. The 
other problem is that, above a certain initial energy, motion for an increasing number of 
starting conditions becomes ergodic or chaotic, there are no constants of the motion, 
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282 N. C. Handy 

and classical motion proceeds only under the one constraint that the total energy is 
constant. 

For those energies and starting conditions where motion is non-ergodic (or 
regular), semiclassical eigenvalues are obtained by quantising the area of the PoincarC 
sections, namely 

(ni +*) 2x = pi dx ,  I, 
and this procedure has formed the basis of many recent studies (Sorbie 1976). The 
earliest work was that by Marcus (1973), who used this approach to calculate the 
section areas numerically from the trajectory information. An examination of his 
results shows that good agreement is achieved between exact quantum eigenvalues and 
semiclassical eigenvalues. In particular, it appears that semiclassical frequencies agree 
with quantum frequencies to better than one wavenumber. 

Much progress has been made recently with this semiclassical approach. One of the 
more interesting recent ideas is due to De Leon and Heller (1983), who showed how to 
remove the necessity of finding the precise trajectory that lies on the quantising torus. 
Their approach depends upon the following features, for a system with N degrees of 
freedom. 

(i) For a given energy E, run the trajectory for a sufficiently long time so that it 
nearly returns to its starting point (see Sorbie and Handy (1977)), and time-average the 
accumulated phase 

4=x  pi*ds,. 

This phase may also be written as 4 = o - J, where J and w = dH/i?J are the actions and 
frequencies of this motion. The frequencies o of any given trajectory may be found from 
a Fourier analysis of any dynamical variable A(t )  (such as a coordinate) over the period 
of the motion: 

i s 

A(t)=CA,exp(il.wt). (23) 
I 

By considering this given trajectory, and a set of N nearby trajectories so that a relation 
@=a. J holds, each with the same energy, and finding their frequencies, J may be 
found from J=o- l@.  

(ii) Having obtained the frequencies o for a trajectory with given energy E,  and the 
associated J, the formula for the semiclassical energy for a state with actions n +$ is 

(24) 
De Leon and Heller found by calculation that this method of procedure is capable of 
producing useful information; even when the percentage error in the actions is a few per 
cent, the percentage error in the energy is typically &j of this. It is therefore possible to 
find estimates for a range of eigenvalues from information derived from one trajectory. 

In a subsequent paper Miller (1984) showed that it is not necessary to calculate the 
nearby trajectories referred to above, but that sufficient information is already 
available from the phase to derive formula equivalent to (24), namely 

E(n) = E + w *  (n ++) - @/T. 

E(n)= E + w . (n +)- J) + O[(n +)- J)’]. 
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Calculation of vibrational energy levels 283 

De Leon and Heller underline the importance of this method in so far that it is 
coordinate-independent; the shape of the tori is no longer of consequence. There are 
some difficulties, but they argue that these can be overcome with more sophisticated 
Fourier-transform techniques. They believe that the method can be extended to 
systems with many degrees of freedom, and they state that there should be no difficulty 
with systems that exhibit resonance C mimi x0 (the mi are frequencies of the motion and 
the mi are small positive or negative integers). 

In this limited space it is not possible to refer to all of the large number of papers on 
this topic in the last ten years. There is much discussion on the interpretation to be 
attached to the chaotic, or non-quantisable, motions. There are many papers on 
reliable methods for the determination of semiclassical eigenvalues; see especially the 
work of Eastes and Marcus (1974), Sorbie (1976), Davis and Heller (1979) Shirts and 
Reinhardt (1982), Miller (1984) and Knudsen et al. (1986). If there are any criticisms to 
be made of such work, much of which has a high-quality original mathematical flavour, 
it is that some authors do not work with forms of H (T and V )  that represent 
polyatomic vibrational motion. In the present author’s view, too much is read into 
‘HCnon-Hei1es’-like systems (HCnon and Heiles 1964). The number of papers in the 
literature that calculate semiclassical molecular vibrational levels is small (H,O being 
the most complicated case; Colwell and Handy (1978)); there are of course many papers 
which discuss the stretching motions in isolation and analyse them in terms of local- 
mode vibrations. 

The next section also discusses a semiclassical method, which is old in its origin, but 
is now attracting attention. 

6. The method of adiabatic switching 
The one-dimensional adiabatic theorem, a proof of which can be found in Landau 

and Lifshitz (1960), states that under a slowly time-varying perturbation, the action 

{PdX 

is conserved provided that the frequency of the motion w(t) is never zero during the 
motion. Johnson (1985) has proposed that this approach be used for multidimensional 
systems, although there can be no extension of the one-dimensional proof to these 
systems. The idea is very straightforward: at time t = 0 the system is vibrating under a 
separable H,(p, r) with actions n +$, the perturbation is then very slowly switched on 
under a Hamiltonian such as 

so that at some large t= T the system is vibrating under 

H(p, r) = H ,  + HI. (26) 
The energy at t = T will be the eigenvalue corresponding to actions n ++ for the 
system H(p, r). 

There is an excellent article on this approach by Skodje et al. (1985), but 
unfortunately the results are much as one would anticipate. However, it has to be 
stressed that in this semiclassical approach there is no searching for a quantizing 
trajectories. Provided that the ‘shape’ of the toroid does not change suddenly during 
the motion, the method appears quite viable. Mathematically, this means that the 
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284 N .  C.  Handy 

system must not pass through a strong resonance; if w,(t) are the frequencies of the 
motion then if l&ziwil can become very small, a strong resonance occurs (in parallel to 
w = 0 in the one-dimensional case), and the method fails. To overcome this problem, H ,  
must be chosen such that this problem does not occur. Skodje et al. discussed examples 
that demonstrate good choices for H,. The other case where the method fails is when 
the trajectories are chaotic, although Skodje et al. found that some states can be 
quantised, even though the trajectories are chaotic. They attributed this success to the 
‘adiabatic switching of a vague torus through chaotic phase space’. 

Skodje et al. considered the stretching motions of HOD and HOH systems, using 
uncoupled Morse oscillators with cos O p , p , ,  (9), as the H I  perturbation. For the HOD 
system the method works well and in a straightforward manner, giving typical 
semiclassical energies, but for HOH there is a severe problem because of the exact 1 : 1 
resonance. For the local-mode states of HOH there is actually no problem, but for 
those trajectories that correspond to normal modes meaningless results are obtained. 
They solve this problem by analysing the motion in terms of a Morse oscillator and a 
hindered rotor, and then redefining H ,  so that its motion corresponds to the final 
motion of the system, that is a trapped rotor. This gives acceptable results for HOH for 
the ‘normal-mode’ oscillators. 

Skodje et al. also applied this method to many levels of the standard Hknon-Heiles 
(1964) system. They also applied it to three-, four- and five-dimensional extensions of 
the HCnon-Heiles system. These latter results are important because, as they say, ‘we 
cannot judge the absolute accuracy of the results obtained here because we do not have 
accurate quantum results for comparison’. This, of course, lies behind the whole study, 
so the present author’s summary of this approach is that it is worthy of further study 
because it can be applied to higher-dimensional systems, but the problem remains that 
different H ,  may have to be designed for different vibrational levels, and this in the end 
may be the point where the method breaks down. 

7. The quantum Monte Carlo procedure 
Here we shall discuss the diffusion Monte Carlo method, with importance 

sampling but without nodal release as it may be applied to molecular vibrations. This is 
a full quantum-mechanical approach, and it has found favour recently as an alternative 
to the variational method because it does not depend upon expansion functions and 
integral evaluation. 

In the diffusion Monte Carlo (DMC) method, the Schrodinger equation is written 
in imaginary time 

1 1 v; -”=[ at -2 1 I -+ m, V - E ,  @, 

where V is the potential surface, the first term on the right-hand side is the nuclear 
kinetic energy and E ,  is an energy shift. If ET is close to the eigenvalue E ,  then, after a 
long time, 

@(R> t)Eexp [ - ( E O  -ET)tl@O(R), (28) 
and so if E ,  is adjusted to be E ,  then asymptotically the longtime solution will be the 
eigensolution 4,(R). We note that equation (27) resembles a diffusion equation together 
with a growth (or decay) term. 

In quantum chemistry, nearly all applications of DMC have been to the electronic 
Schrodinger equation, but recently Watts and co-workers have suggested its 
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application to molecular vibrations (Coker et al. 1985). One follows the procedure 
outlined by Anderson (1979, but adjusts it for vibrations. 

(i) A sample (N, )  of different positions R, (configurations) of the nuclei is 
obtained. 

(ii) For each time step z, for all nuclei in each configuration, they are moved 
according to 

RI+RI + X I ,  (29) 
where X ,  is a Gaussian random number with zero mean and a variance 2z/m,. 

(iii) After all the nuclei in any one configuration have been moved, M copies of this 
configuration are entered into the sample, 

M=int {exp[-(V’-ET)z]+[}, (30) 
where V’ is the value of V for this new configuration and [is a random number 
in [0,1]. This corresponds to the growth (or decay) term in (27). 

After a reasonable number of time steps, E ,  is updated to be a suitable average of 
the V calculated at all time steps so far. 

The process is continued for a time sufficiently long for all initial effects to have 
disappeared, and ideally the final results are averaged over many different starting 
samples, and time steps and length of runs. 

This approach appears to be very attractive for molecular vibrations, because in the 
simplest analysis, only eigenvalues are required. This is unlike the quantum chemistry 
application, where the principal objection must be that a potential surface calculated 
by this method cannot be smooth because of its statistical nature. 

The present author first applied the method to the simple harmonic oscillator 

f kx2, 
1 d2 

2m dx2 
H= _ _  -+- 

with m = 1836 and k = 0.25, for which the exact lowest eigenvalue is 1807 cm- ’. Using 
N,=  100 and z=O.l, values for E ,  after successive blocks of 12 500 time steps were 
1855, 1832, 1830, 1819, 1811, 1803, 1813 and 1 8 1 6 m - ’ .  Although reasonably 
successful, it is clear that very long runs would be required to obtain an eigenvalue 
estimated to be corrected to 1 cm-l. 

In DMC, as applied to a molecular vibration, it is probable that the fast-moving 
stretching vibration will take longer to settle than the slower-moving bending motions. 
However, for the stretching motions, we do have an excellent idea of the form of the 
wavefunction, namely harmonic-oscillator or Morse-oscillator functions. This leads to 
the idea of importance sampling (as applied to the electronic Schrodinger equation by 
Reynolds et al. 1982). Iff= @(R, t)+,(R), where +, is a well chosen trial function, the 
Schrodinger equation (27) becomes 

where EL = H@T/$T and F, = 2vI+T/+p This DMC equation has the same form as (27), 
with V replaced by EL, the local energy of ~ , h ~ ,  and F, plays the role of a drift term. 

It was again applied to the harmonic oscillator, using a trial function +, = exp (- 0.95ax2), where exp (- ax2) is the exact wavefunction. The old algorithm is 
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changed in two places: Vis replaced by EL, and (29) is replaced by 

(33) 
1 

Rl+ R, + XI  +-F,. 
2mr 

Using the same values as before for N ,  and z, the values for ET after successive blocks of 
12 500 time steps were 1806.0, 1806.3, 1806.2, 18054 and 18061 cm- ', an enormous 
improvement! With N,=200 and z=O-5 the results were 1807-8, 18078, 1807.6 and 
18075cm-', and with N,=100 and z = 0 5  they were 1806.8, 1806-8, 1807-1 and 
1807.2 cm - '. These trial calculations show that the importance-sampling algorithm 
makes such calculations of great interest. 

Finally, the method was applied to H,O, using the potential 

I/- 025(Arf + Ar;) + 0 1 At?,, 

$ =exp ( - a  Arf - a Ar;). 

(34) 

(35) 
The form of ? in internal coordinates has already been given for H,O, in (9). Writing 
the wavefunction t+bT as rlr2+, then selecting only those terms that depend upon rl and 
r,, it follows that 

with a trial function 

a is chosen such that the first two terms of p+T/$T cancel the first two terms of V. 
The approach continues exactly as for the harmonic oscillator; for each 

configuration each nucleus has coordinates (x, y, z) in a laboratory-fixed frame. Using 
mH = 1836, m, = 16m,, N ,  = 400 and z = 0.5, values of E ,  for successive blocks of 10 000 
time steps were 4563,4556,4555,4555,4552,4555 and 4555 cm-'. The exact quantum 
eigenvalue obtained by the variational method is 4560 cm- '. The approach therefore 
seems viable, and it is attractive because it can be applied to systems with more than 
three atoms. 

All of the above holds for the lowest vibrational eigenvalue, namely the zero-point 
energy. This is very useful in itself. For example, Isaacson and Truhlar (1984) observe 
that one of the best ways to calculate vibrational partition functions is by the Pitzer- 
Gwinn method, and all that this method requires is the zero-point energy of the 
molecule. 

For the lowest eigensolution, the wavefunction is everywhere-positive. To extend 
the approach to excited states is more difficult, because, for the approach to be 
successful, the probability distribution must be single-signed. This has been overcome 
by the electronic-structure DMC enthusiasts using a 'fixed-node' algorithm, the 
domain of the configurations being constrained to lie in a region where +T is single- 
signed. In other words, one obtains, in principle, an upper bound on the exact 
eigenvalue, with the boundary conditions being that @ = 0 where $T = 0. 

There are methods in the literature that have overcome this fixed-mode constraint 
(Ceperley and Alder 1984), but whether in practice it is possible to pick up the energy 
change on nodal release from the underlying uncertainty in the results remains to be 
seen. Watts has, however, been successful in using the DMC approach to calculate 
accurate vibrational frequencies for the water dimer and trimer (Coker et al. 1985, 
Coker and Watts 1987) and small H F  clusters (H. Sun and R. 0. Watts, unpublished 
work). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculation of vibrational energy levels 287 

8. Conclusion 
This review has attempted to show that there is active research in the area of the 

determination of vibrational energy levels of molecular potential surfaces. It is hoped 
that the impression has been given that there are several alternative ways of proceeding 
for polyatomic molecules-variational, semiclassical or quantum Monte Carlo-but 
that each has major difficulties associated with it. At present there does not seem to be a 
way of accurately calculating the lowest vibrational energy levels of a molecule like 
formaldehyde or methane, for a simple (e.g. quartic) potential surface. 
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